
EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze
Typing

Akanksha Saran∗
Sony AI

San Francisco, CA, USA
akanksha.saran@sony.com

Jacob Alber
Microsoft Research
New York, NY, USA

jacob.alber@microsoft.com

Cyril Zhang
Microsoft Research
New York, NY, USA

cyrilzhang@microsoft.com

Ann Paradiso
Microsoft Research
Redmond, WA, USA

annpar@microsoft.com

Danielle Bragg
Microsoft Research
Cambridge, MA, USA

danielle.bragg@microsoft.com

John Langford
Microsoft Research
New York, NY, USA
jcl@microsoft.com

Abstract
Gaze tracking devices have the potential to expand interactivity
greatly, yet miscalibration remains a significant barrier to use. As
devices miscalibrate, people tend to compensate by intentionally
offsetting their gaze, which makes detecting miscalibration from
eye signals difficult. To help address this problem, we propose a
novel approach to seamless calibration based on the insight that
the system’s model of eye gaze can be updated during reading
(user does not compensate) to improve calibration for typing (user
might compensate). To explore this approach, we built an auto-
calibrating gaze typing prototype called EyeO and ran a user study
with 20 participants. Our user study results suggest that seamless
autocalibration can significantly improve typing efficiency and user
experience.

CCS Concepts
• Human-centered computing → Interaction techniques; In-
teraction devices; Keyboards; Displays and imagers.

Keywords
gaze tracking, eye typing, gaze typing, autocalibration, miscalibra-
tion, implicit calibration
ACM Reference Format:
Akanksha Saran, Jacob Alber, Cyril Zhang, Ann Paradiso, Danielle Bragg,
and John Langford. 2025. EyeO: Autocalibrating Gaze Output with Gaze
Input for Gaze Typing. In Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems (CHI EA ’25), April 26–May 01, 2025, Yokohama,
Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3706599.
3720090

1 Introduction
Eye tracking technology has emerged as a valuable tool in acces-
sibility, augmented reality (AR), virtual reality (VR), robotics, and
∗Work done while at Microsoft Research New York.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1395-8/25/04
https://doi.org/10.1145/3706599.3720090

gaming [28, 41]. A key use case is gaze typing, enabling text input
via gaze on an on-screen keyboard—a hands-free method of com-
munication widely adopted in both general and assistive contexts.
Beyond current applications, eye tracking holds the potential to
enhance interaction by understanding user attention and personal-
izing interfaces [9].

Despite this potential, calibration difficulties remain a major
barrier to use [1, 2, 13, 19, 20, 40]. Calibration is a process that
establishes a relationship between the user’s gaze and the corre-
sponding screen coordinates. It is traditionally achieved through
an explicit guided process of looking at visual targets, separate
from the downstream application the user might be controlling
with their gaze. While effective, this explicit calibration approach
is tedious, time-consuming, and sensitive to variations in lighting,
head position, and other factors, often necessitating frequent recal-
ibrations [16, 42, 43]. This challenge is particularly acute for users
with motor impairments who may struggle with traditional calibra-
tion protocols, and have to recalibrate their eye tracker between
3-10 times per day [9]. Miscalibration not only degrades system
performance but also burdens users, who must compensate for
inaccuracies, leading to additional cognitive load.

Although automatic miscalibration detection and correction
could address this issue, users’ compensatory behaviors—such as
intentionally offsetting their gaze—complicate such efforts. For in-
stance, in dwell-based gaze typing [24, 29], users may deliberately
glance at adjacent keys to activate the intended key, further con-
founding miscalibration detection. These behaviors, while enabling
task completion, increase user effort and reduce system usability.

In this work, we introduce EyeO, a novel autocalibrating gaze
typing prototype that addresses these challenges. EyeO leverages
a key insight: while users compensate for miscalibration during
typing, they do not compensate when reading previously typed
text. By detecting gaze behavior during reading, EyeO dynamically
updates calibration to reduce the need for manual recalibration.
The prototype tracks fixations on the last typed character displayed
on the screen, comparing the predicted gaze with the character’s
screen location to estimate and correct calibration offsets. EyeO
aims to improve the gaze typing experience by seamlessly adjust-
ing calibration in real-time, thereby reducing the need for manual
recalibration and offering a more natural and efficient interaction.

To evaluate EyeO, we conducted a user studywith 20 participants
examining its impact on typing efficiency, error reduction, and user

https://orcid.org/0000-0002-9637-6699
https://orcid.org/0009-0005-5720-0411
https://orcid.org/0000-0002-8707-1279
https://orcid.org/0000-0002-5092-8603
https://orcid.org/0000-0002-7846-3481
https://orcid.org/0009-0000-3454-9710
https://doi.org/10.1145/3706599.3720090
https://doi.org/10.1145/3706599.3720090
https://doi.org/10.1145/3706599.3720090
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706599.3720090&domain=pdf&date_stamp=2025-04-25

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

(a) Windows Eye Control application (b) A user operating a customized gaze typing application

Figure 1: Windows applications for (a) visual PC control and (b) gaze typing — both leveraging user’s eye movements tracked
via an external Tobii eye tracking device.

experience. Our findings demonstrate significant improvements
in typing speed and satisfaction compared to the static, explicit
calibration approach. EyeO’s seamless calibration holds promise
for a wide range of users, from those with motor impairments
relying on gaze typing for communication to gamers and AR/VR
users seeking enhanced interaction.

Our contributions are:

• A novel gaze typing autocalibration algorithm leveraging
behavioral differences between typing and reading to correct
miscalibration.

• A practical implementation of this algorithm in the EyeO
prototype, with the potential to adapt to existing keyboard
layouts and eye trackers.

• A user study validating EyeO’s effectiveness, highlighting
its potential to improve performance and user experience
for gaze-based systems.

2 Background and Related Work
We provide a brief overview of prior approaches for explicit and
implicit calibration of eye trackers (Sec. 2.1) which rely either on
additional external hardware or specialized display designs. Our
work overcomes the shortcomings and design restrictions of these
prior methods to offer a novel approach for seamless autocalibration
by learning from differences in eye gaze between typing and reading.
We also briefly review prior findings on the reading behavior of
users during gaze typing in Sec. 2.2, which we leverage in our
autocalibration algorithm.

2.1 Calibration Methods for Eye Trackers
Calibration is essential in eye tracking systems, mapping gaze to
screen coordinates. Traditional methods involve explicit calibration,
requiring users to fixate on targets like a 9-point grid, which can
be time-intensive, interrupt the flow of the task at hand, and are
quite uncomfortable for some users, particularly those with motor
impairments [9, 18, 20]. To improve user experience, simplified
explicit calibration techniques have been proposed, such as using

fewer [15] or natural targets [37, 38], but these still depend on
user cooperation, changes to the keyboard design, and sometimes
custom hardware.

Alternatively, implicit calibration techniques eliminate the need
for explicit user input. These methods leverage saliency maps to
infer gaze fixations [12, 13, 20, 40] or use correlations with dynamic
stimuli like smooth pursuits [1, 2, 30] or mouse clicks [10, 19]. For
example, calibration-free systems have used moving text [21] or
clustered, outward-moving characters [22] for gaze typing. How-
ever, these approaches often depend on specific interfaces or addi-
tional apparatus to take user clicks as input, limiting their flexibility
for diverse hands-free applications.

Unlike these prior methods, our approach enables real-time au-
tocalibration during natural gaze interactions without explicit user
input or specialized setups, making it adaptable to existing keyboard
layouts and eye tracking devices.

2.2 Reading Behavior during Gaze Typing
Research on gaze scan paths shows that, when reading textbooks
or digital text for comprehension, people fixate near the center of
words [31, 39]. However, gaze typing includes an additional factor:
the user is not only reading but also producing the text letter by
letter. During text production, the user’s immediate concern may
be accuracy at a micro-level (the last character typed) rather than
fluent reading of entire words or sentences.

Multiple studies and review articles on gaze-based text entry
have documented that users frequently verify the result of their
input after selecting each character [17, 25–27]. This verification
behavior implicitly suggests that users often fixate on the last typed
character or the immediate vicinity of it as they proceed. Majaranta
and Räihä [25] discuss the importance of feedback mechanisms and
usability concerns in eye typing systems. They highlight that users
rely on immediate visual feedback to confirm correct input and
make corrections, which leads to users often momentarily fixating
on what they have just entered. Majaranta and Räihä [26] further
elaborate that during dwell-based typing, users rely on looking back

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

at the typed text to ensure accuracy. Our work leverages this user
pattern to detect the offset in predicted gaze for autocalibration.

3 EyeO Prototype
Eye gaze systems typically require users to stop gaze typing tasks
to explicitly recalibrate a miscalibrated eye tracker. To implicitly
address such task interruption without any change to the keyboard
layout, we present EyeO, which dynamically recalibrates the eye
tracker during typing without interrupting the user. By leveraging
differences in gaze behavior during reading (perception) versus
typing (control), EyeO uses the user’s natural fixations on the last
typed character to update calibration offsets in real-time. This ap-
proach eliminates the need for manual recalibration and ensures
smooth interaction.

3.1 System Design
EyeO builds on the existing visual keyboard part of the widely
available Windows Eye Control application [4] (Fig. 2) and adds
dynamic calibration updates in real-time. The system uses a Tobii
PCEye infrared tracker (60 Hz sampling rate) connected to a Win-
dows 11 laptop, enabling gaze-controlled typing. The tracker can
be calibrated via a standard 9-point calibration software available
with the purchase of the tracker. A user’s gaze location as detected
by the eye tracker is displayed as a red dot on the screen ((Fig. 2). If
they fixate on a key for 50 ms, the system initiates a dwell timer
of 400ms (Fig. 2(a),(b)). When the timer finishes, the user receives
visual feedback that the character on the key has been typed: the
key turns red (Fig. 2(c)) and the letter is added to the text box at the
top of the screen (Fig. 2(d)).

In this work, we use the visual keyboard layout on a 14 inch
Lenovo laptop screen. The keyboard implementation we used is
available via the open-source Windows community toolkit [6] and
our autocalibration algorithm is added to the keyboard functionality
via a UWP application available as part of Microsoft’s open-source
Gaze Interaction Library [5]. The software for our autocalibration
algorithm was developed in Python, which received the 2D gaze
coordinates in real-time from the UWP application via Google’s re-
mote procedure call (RPC) protocol. This allowed Python scripts to
access gaze data, analyze it, and apply the necessary miscalibration
corrections to display back on the visual keyboard application in
real-time (∼ 60 Hz).

3.2 Autocalibration Algorithm
The autocalibration algorithm implemented as part of the EyeO
prototype dynamically corrects calibration by detecting gaze offsets
during reading. When a user fixates on the last typed character,
the system compares the predicted gaze position to the center
location of the character typed on the screen. Discrepancies are
calculated as calibration offsets, which are smoothed over time
using a moving average. These offsets are continuously applied to
adjust gaze predictions in real-time, ensuring seamless calibration
during ongoing reading and typing tasks. This approach eliminates
the need for manual recalibration and adapts to changes in user
behavior or environmental conditions. Figure 3 provides a simplified
schematic of the procedure, while Algorithm 1 presents it in full

detail. Additional details about the hyperparameters used in the
Algorithm are described in Appendix A.1.3.

Algorithm 1 EyeO Autocalibration for Gaze Typing

Require: Stream of gaze coordinates (𝑥𝑡 , 𝑦𝑡) detected by an eye
tracker; window size𝑤 for running average; calibration error
bound 𝑏; calibration zone threshold 𝜏 ; 𝑦-coordinate for lower
boundary of text box 𝑦text_box_bottom

1: Initialize 𝑛char := 0 // number of characters visible in text box
2: Initialize 𝜖𝑥0 := 0, 𝜖𝑦0 := 0 // calibration error in 𝑥 and 𝑦

directions
3: for raw gaze coordinates (𝑥𝑡 , 𝑦𝑡): do
4: Receive 𝑛charfrom typing application
5: if 𝑦 < 𝑦text_box_bottom and 𝑛char > 0 then
6: Receive location of last type character (𝑥𝑐 , 𝑦𝑐) from typing

application
7: if fixation detected and

√︁
(𝑥𝑐 − 𝑥𝑡)2 + (𝑦𝑐 − 𝑦𝑡)2 < 𝜏

then
8: 𝛿𝑥𝑡 := 𝑥𝑐 − 𝑥𝑡 , 𝛿𝑦𝑡 := 𝑦𝑐 − 𝑦𝑡 // infer user is reading

at (𝑥𝑐 , 𝑦𝑐)
9: 𝛿𝑥𝑡 := 1

min(𝑤,𝑡)
∑𝑡

𝑗=max(0,𝑡−𝑤+1) 𝛿𝑥𝑡 , 𝛿𝑦𝑡 :=
1

min(𝑤,𝑡)
∑𝑡

𝑗=max(0,𝑡−𝑤+1) 𝛿𝑦𝑡 // sliding window
estimate

10: 𝜖𝑥𝑡 := clip(𝛿𝑥𝑡 ,−𝑏, 𝑏), 𝜖𝑦𝑡 := clip(𝛿𝑦𝑡 ,−𝑏, 𝑏) // clip
to maximum allowed offset

11: end if
12: else
13: 𝜖𝑥𝑡 := 𝜖𝑥𝑡−1 , 𝜖𝑦𝑡 = 𝜖𝑦𝑡−1 // infer user is typing; keep

current error calibration
14: end if
15: return calibrated gaze coordinates (𝑥𝑡 , 𝑦𝑡) := (𝑥𝑡 +𝜖𝑥𝑡 +𝑦𝑡 +

𝜖𝑦𝑡)
16: end for

4 User Study
To explore the effectiveness of our autocalibration technique and
how it shapes a user’s gaze typing experience, we ran an in-lab
user study with IRB approval. We compared EyeO to a standard
manual calibration control (which does not autocorrect in the case
of miscalibration). After standard calibration, miscalibration of
different amounts was purposefully introduced to evaluate the
typing experience of users under such conditions.

4.1 Participants
We recruited 20 participants (14 male, 6 female, aged 18–55) with
normal (20/20 vision) or mild to moderate corrected-to-normal
vision (20/40 to 20/160). Two participants wore glasses, and two
had prior experience with gaze typing. None of the participants had
color blindness or any other eye conditions. All of themhad at least a
university graduate-level education, ensuring a high level of English
reading literacy as a proxy for their reading and interpretation skills.
Each session lasted approximately 60 minutes with the flexibility to
take breaks as needed. Participants were compensated for their time.
One participant found the typing experience very uncomfortable

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

(a) (b)

(c) (d)

Figure 2: Screenshots of the system’s visual keyboard display. A user can activate a key (i.e. type a character) on the visual
keyboard by dwelling on it for a fixed duration of time (400ms). Here we show the snippets of visual feedback (in order) that a
user receives when successfully typing a character with their eye gaze: ((a),(b)) launching a timer during the dwelling period
which is displayed as a shrinking green rectangle, (c) activating the key for the letter ‘h’ if their eyes are still gazing at that key
by the the end of the timer (depicted as the key turning red), (d) the character on the activated key is displayed at the top of the
screen.

the quick brow the quick brown f

true gaze (unobserved)

gaze from sensor

EyeO estimated gaze

(xt, yt)

(̂xt, ̂yt)
calibrate with

re-estimate error
detect fixation at yt < ytext_box_bottom

true gaze (inferred):
⃗εt

⃗εt

(xc, yc)

Figure 3: Simplified diagram of Algorithm 1, depicting the input and output modes of the EyeO auto-calibrating interface.
Left: While the user is typing (lines 12-14), the algorithm receives a stream of miscalibrated sensor inputs (𝑥𝑡 , 𝑦𝑡), and sends a
calibrated sequence (𝑥𝑡 , 𝑦𝑡) := (𝑥𝑡 + 𝜖𝑥𝑡 , 𝑦𝑡 + 𝜖𝑦𝑡) to the interface, adjusted using the current error estimates. Right: While the
user is consuming system output (lines 5-11), the system infers that the user is looking at (𝑥𝑐 , 𝑦𝑐), the location of the last typed
character, and uses this to update the error estimates (𝜖𝑥𝑡 , 𝜖𝑦𝑡) used for calibration. This inference only occurs when fixation is
detected within a threshold 𝜏 .

during the practice session and opted out of the study. We thus
report results for 19 participants.

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

4.2 System Setup
Participants were seated comfortably at a distance of approximately
75cm from the laptop screen and head movements were not re-
strained to encourage natural gaze interaction. Two typing systems
were evaluated: (1) EyeO with dynamic autocalibration and (2) a
control that relied on traditional calibration alone. Both systems
used the same visual keyboard layout and gaze typing application.
All manual calibrations were performed via the standard Tobii SDK
9-point calibration procedure. All tests were conducted in a well-lit
white-light room.

4.3 Procedure
The experiment consisted of an initial calibration procedure, a prac-
tice round, and trials of both EyeO and the control (within-subjects
study). The order of system trials was counterbalanced across par-
ticipants. During each trial, participants typed five random phrases
from a standard corpus (MacKenzie and Soukoreff phrase corpus
[23]) under systematically induced miscalibration scenarios: (1) 0
(no miscalibration), (2) +75 pixels in the x direction, (3) -75 pixels
in the x direction, (4) +75 pixels in the y direction, (3) -75 pixels in
the y direction. These five miscalibration amounts were counter-
balanced across different users, i.e. all users typed with the same
five miscalibration levels but in varying orders. The order of pre-
sented miscalibration amounts was balanced across participants
and system conditions using the Latin Square technique.

To better understand if EyeO led to a more positive user expe-
rience over the control system, we asked participants to rate each
system in terms of the mental workload required (at the end of each
of the two system trials) using the NASA TLX questionnaire [11]
(survey questions are shared as part of the supplementary materi-
als). At the end of the study, we also asked them to share feedback
in written form about their gaze typing experience between the
two systems, and if they preferred one over the other (the feedback
form is shared as part of the supplementary materials). To further
assess the effectiveness of EyeO autocalibration for gaze typing, we
computed typing efficiency in terms of typing speed (characters
per minute), number of backspaces, and abort frequency (number
of sessions where the user gave up phrase typing) as quantitative
performance metrics.

4.4 Results
4.4.1 Typing Efficiency. We found that EyeO exhibited faster typ-
ing speeds (characters/minute) (Fig. 4(a); 𝑝 < 0.05), lower use of
backspaces (Fig. 4(b); 𝑝 = 0.53), and lower abort frequency (Fig. 4(c);
𝑝 < 0.05) in comparison to the static control system. Differences
between typing speed and abort frequency were statistically signif-
icant (Fig. 4(a),(c)). Considering gaze data for EyeO after the first
reading attempt (when the system gets the first opportunity to au-
tocalibrate), differences for typing speed and number of backspaces
used were even larger (Fig. 4(d),(e)). With this consideration, typing
speed is strikingly different between the two systems (𝑝 < 0.001),
hinting towards the effectiveness of EyeO’s autocalibration tech-
nique.

In Table. 1, we show that EyeO on average improves over the
initial 9-point calibration. However, the results are not statistically
significant (typing speed: 𝑝 = 0.97, backspace count: 𝑝 = 0.53).

Table 1: Mean and standard error of typing efficiency metrics
for the 0-miscalibration case.

System Typing Speed (chars/min) Backspace Count
Control 23.72 ± 1.38 1.22 ± 0.49
EyeO 23.81 ± 1.70 0.75 ± 0.46

This implies that cases with large miscalibration contribute to more
prominent gains for EyeO. We use data from the 0-miscalibration
case for both systems to compute these values. No sessions were
aborted for any of the two systems in this condition.

4.4.2 Mental Workload. Participants consistently rated EyeO more
favorably than the static control (manual calibration) in the NASA
TLX survey. This survey assesses a system’s mental workload in
terms of mental demand, physical demand, temporal demand, per-
formance, effort, and frustration. In Fig. 5, we observe that along
four of the six dimensions, differences between EyeO and the static
control are statistically significant (p< 0.05). With EyeO, partic-
ipants perceive reduced mental demand, improved performance,
reduced effort, and reduced frustration. These results highlight an
improved and more seamless user experience with autocalibration
via EyeO compared to a static calibration approach. Qualitative
feedback (Sec. 4.4.3) provides further support for these findings
along the dimensions of mental comfort, performance, effort, and
frustration.

We note that several participants asked us clarifying questions
about the descriptions for physical demand and temporal demand.
It is possible that the results for these two dimensions reflect dis-
crepancies in their interpretations.

4.4.3 Overall Preferences. We asked participants “Which system
do you prefer to use as an end-user of this device?”. Their pref-
erences between the systems were: EyeO 14 (73.68%), control 3
(15.79%), no preference 2 (10.53%). Open feedback from participants,
summarized below, sheds light on these preferences.

Participants who preferred EyeO cited increased comfort and
ease. One explained, “I prefer [EyeO], because it was on average
easier and required less mental and physical load.”. Another noted
the accuracy of the system, “As an end-user I prefer [EyeO] as it was
more accurate for most of the sentences I typed. It was only frustrating
for 2/5 sentences, as opposed to [the control] which was frustrating for
most of the sentences.”. Participants also appreciated the real-time
updates, one user noting “[EyeO] adapted quickly to where I was
looking”. Others said, “[EyeO] seemed to adjust to my typing and
improve as I performed the task whereas [the control] was constantly
bad (and while the consistency helped and I learned to adjust where
the system faltered, I was frustrated I needed to apply additional effort
to complete the task)” ; “In [EyeO], I would start off having to recognize
the offset and type accordingly, but after a few characters it would
adapt and then I could actually look at the intended character, so it
got progressively easier. In [the control] interface, when it worked (1
case) it was very smooth, but for the other 4 cases I had to identify
the offset and consistently use it to type the whole phrase.” Some
users also perceived that their own ability to type improved with
EyeO, “When starting with [EyeO], I did notice I was better at [gaze

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

(a) Typing Speed (b) Number of Backspaces (c) Abort Frequency (d) Typing Speed (after EyeO’s
first read)

(e) Number of Backspaces (after
EyeO’s first read)

Figure 4: Quantitative metrics of typing efficiency for the two systems. Error bars represent standard error (SE). Significance
codes: * < .05, ** < .01, *** <.001

Figure 5: NASA-TLX responses about user workload for the two systems. Error bars represent standard error (SE). Significance
codes: * < .05, ** < .01, *** <.001

typing] as I used more sentences, irrespective of how difficult the given
sentence was to type as I was more comfortable overall.”.

Since we purposefully introduced miscalibration to evaluate
EyeO’s corrections, some users also noted the struggle with EyeO
before the autocalibration started with the first reading attempt,
even though overall they preferred it over the static control. “I found
[the control] to be substantially more difficult to use. I felt significant
strain while using it and felt noticeably tired after completing the
five [control] tasks. [EyeO] was not easy to use...but I did not feel
as strained while using it. Overall, I would describe [the control] as
difficult to use and very uncomfortable, and [EyeO] as difficult to use
but only somewhat uncomfortable”. When asked further to explain
their reasoning for preferring [EyeO], they noted, “I much preferred
[EyeO]. I don’t think I could have completed more than five sentences
using [the control] without having to take a break. With [EyeO] I
believe I could have done eight to ten sentences before needing a break.
Even with a break, however, I do not think I could complete more
than two five-sentence sessions using [the control] without needing to
walk away from the computer for an extended (10+ minute) period of
time. While answering the survey for [the control], I felt like I had a
headache. I was worried that the headache would get worse during
the next session of typing, but it did not. [EyeO] was not comfortable

to use, but it did not cause me the sort of discomfort and mental strain
I felt during and immediately after using [the control].”.

Participants who did not prefer EyeO cited some pitfalls of our
approach. A few users preferred the reliability of errors in the static
calibration system, despite additional cognitive load. As one par-
ticipant explained, “The error or offset between where I gaze and the
detected cursor seems constant in [the control]. In [EyeO], the error
is more random.” This reveals an opportunity for EyeO to be made
more robust in terms of reducing the frequency of autocalibration
updates as the session progresses. Additionally, we note that partici-
pants were neither made aware of the autocalibration feature nor its
reliance on their verification of the last typed character. While most
users fixated on the last typed character at least once during a trial,
we noticed one user never verified what they typed with their gaze
and instead relied on activated keys turning red (Fig. 2(c)). If a user
does not look at the text box to verify the typed text, EyeO does not
update the calibration. This contributed to unpredictability for a
minority of users. Though the purpose of the study was to evaluate
‘implicit’ autocalibration, we believe if users were made aware of
the underlying autocalibration technique and how it works, that
could further enhance their experience.

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

One participant summarized the tradeoff between systems: “It
felt as if [EyeO] was adapting to the miscalibration in the eye tracker,
whereas [the control] was not. The adaptability of [EyeO] has bene-
fits and tradeoffs. It meant that [the control] was more predictable,
whereas [EyeO] was less predictable. That said, there was perhaps
less overall motor coordination effort involved in using [EyeO]”. The
same user noted, “I think that overall I would prefer [EyeO] in the
long-term.”

4.5 Verification of last typed character reading
assumption

We analyze the data collected during our user study to validate the
assumption used by EyeO (Algorithm 1), i.e. that participants fixate
on the last typed character when they look up at the text box to
verify what they typed recently (Fig. 7(b)). We measure the per-
centage of last character fixation attempts for all textbox lookups,
lookups after typing each word, and lookups before or after a typing
error (resulting in the use of the backspace key). To detect the last
character fixation attempts, we rely on the gaze filtering procedure
described in Appendix A.1.2 and the text box lookup criteria in
Appendix A.1.3 and Algorithm 1. To validate that users often read
the last character (making autocalibration with our proposed Al-
gorithm 1 feasible), we analyze data from well-calibrated sessions
(no induced miscalibration in any direction or the 0-miscalibration
case described in Sec. 4.3) recorded with the control system dur-
ing our user study. Using data solely from the control system for
this analysis ensures that no gaze pointer/autocalibration updates
occur throughout the typing session, preventing any conflation in
our interpretation of fixation attempts. We can accurately compute
the center location (𝑥𝑐 ,𝑦𝑐) of the last typed character displayed on
the text box at the top of the screen. Fixations within the circular
calibration zone of radius 𝜏 = 150 pixels from the center (𝑥𝑐 ,𝑦𝑐) are
considered as fixation attempts at the last-typed character. Char-
acters on the textbox are 12-20 pixels wide and 25-30 pixels long.

We find that participants fixate on the last typed character for a
large proportion of lookups to the text box at the top of the screen.
Moreover, last character fixation attempts are more common after
the completion of a word or when a user mis-types a character
(i.e. uses the backspace key). Detailed results are shown in Table 2
averaging performance across participants. These findings confirm
that a large fraction of all eye gaze reading attempts are comprised
of fixations on the last typed character, validating our assumption.
It further explains the effectiveness of such fixations to help auto-
calibrate the eye tracker in our proposed algorithm as evaluated in
the user study (Fig. 4, Fig. 5). Thus, the results of our EyeO autocal-
ibration approach are promising, indicating potential for broader
adoption of future gaze typing systems.

5 Discussion
As this work suggests, autocalibrating eye trackers without intro-
ducing additional tasks for the end user represents a step towards
building more seamless user experiences. Gaze data offers vast po-
tential as a form of input for computer interaction, effectively mak-
ing technology more accessible and user-friendly [8, 10, 32, 34, 36].
With autocalibration, an array of seamless gaze interactions may

Table 2: Validation of last character fixation assumption us-
ing the 0-miscalibration case in the control condition. Three
types of lookup evaluations in which the participant verifies
the last typed character are shown. Mean and standard error
values depict the percentage of times a user fixates on the
last character for each evaluation metric.

Overall lookups After word completion During typing errors
67.1% ± 2.6% 75.9% ± 4.2% 79.1% ± 4.0%

become possible in natural settings, beyond controlled laboratory
setups. To help inform such developments, below we discuss the
limitations of our proposed technique (Sec. 5.1), implications of
autocalibration for gaze typing (Sec. 5.2), and potential avenues for
future work (Sec. 5.3).

5.1 Limitations
While our technique introduces new possibilities for making in-
teractions more seamless, it also has several limitations. Firstly,
our proposed gaze-typing autocalibration technique assumes that
users at least fixate on the last typed character to verify what they
typed. While we validate that this assumption holds for a majority
of participant trials in our user study (Sec. 4.5 and Table 2), in rare
scenarios, a user may never look at the text box to verify the typed
text and instead rely on the visual changes during key selection
(also noted in Sec. 4.4.3). Additionally, a user may read the entire
word or larger parts of the typed text [27, 31]. In such cases, EyeO
only detects fixations and autocalibrates when the user’s gaze falls
within the calibration zone (line 7 in Algorithm 1, Appendix A.1.3,
Sec. 4.5) of the last-typed character, i.e. a circular zone with a small
radius (𝜏 = 150 pixels) around the center of the last typed character.
Systems that can accurately detect reading of different characters
on the text box can potentially further improve the performance of
EyeO.

Although we correct gaze offsets uniformly across the screen,
prior work [11] has shown that eye-tracking accuracy can vary
significantly across different screen regions. However, factors such
as user movement or changes in the tracking setup, which introduce
post-calibration errors, tend to cause miscalibration in consistent
directions across the entire screen [11]. In such cases, correcting
miscalibration based on fixations at the top of the screen can still
improve typing speed in lower screen regions compared to leaving
the miscalibration uncorrected. Moreover, using fixations from
other application-specific gaze input targets available on different
parts of the screen can help to more correctly adjust eye tracking
offsets.

As in gaze tracking generally, our technique relies heavily on
users having clear, unobstructed vision and the capacity to make
smooth eye movements across the visual keyboard, which may not
always be the case, particularly for users with specific ocular or neu-
rological conditions. Additionally, eye movements during reading
andwriting are influenced by numerous cognitive and physiological
factors, such as attention, fatigue, and cognitive load. These factors
can cause dynamic changes in eye movement behavior, potentially
affecting the computation of the miscalibration offset and hence
the calibration accuracy. Also, note that in rare cases users might

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

use their peripheral vision to verify the typed characters. While
traditional infrared eye trackers only track the center of the pupil
and thus cannot directly detect peripheral gaze, there are indirect
ways to measure such verification attempts in the form of quick
saccades away from the typing fixations. However, without a clear
detection of the gaze offset in the reading zone, there is no direct
way to autocalibrate when users employ their peripheral vision.

5.2 Implications for Gaze Typing
We show that gaze offsets during verification of the last typed
character can be leveraged for autocalibration of eye trackers and
enhance gaze typing experience. Note that some prior works have
proposed techniques beyond autocalibration such as dwell-time
customization [29] and dynamic updates to keyboard parameters
[3, 7, 9] that make gaze typing interactions adaptive and seamless.
However, autocalibration is a complementary approach to improve
the gaze typing experience and these additional approaches are
beyond the scope of this work. Combining autocalibration with
these other adaptive gaze typing techniques can further advance
the goal of seamless gaze typing interfaces.

While we test EyeO with a single system setup, technically the
algorithm is flexible enough to easily adapt to other monitor sizes,
user distances, keyboard layouts, and PC eye tracking device manu-
facturers. However, such adaptation would require an initial phase
of hyperaparameter tuning of the autocalibration parameters used
in Algorithm 1. Additionally, to make EyeO’s updates more accurate
in different parts of the screen [9], using fixations on the center
of a word during reading [31] and on other perception/reading
targets in varied parts of the screen can make EyeO extend beyond
one-point calibration.

5.3 Future Work
While we tested our autocalibration prototype with a single fixation
point on the text box placed at the top of the screen, techniques that
can leverage reading of longer typed text can provide more data
about the gaze offset for autocalibration. Additional perception-
based landmarks could be placed on different parts of the screen
to help estimate a fine-grained miscalibration map and more accu-
rate autocalibration. Evaluation of EyeO’s adaptability to different
monitor sizes, user distances, keyboard layouts, and eye tracking
devices is an important direction for future work. Prior approaches
using saliency maps, application-specific buttons, correlation of
smooth pursuits and moving targets, next-word predictions, etc.
can further augment EyeO for enhanced autocalibration, and in
turn more seamless gaze interactions.

The autocalibration approach, by enhancing the accuracy and
efficiency of eye tracking, can contribute towards creating more
holistic, powerful, and intuitive interfaces, especially for real-world
applications like augmented reality (AR) and virtual reality (VR).
With increasing reliance on these technologies for various purposes
– from gaming to professional training – the need for seamless
and efficient interfaces is paramount. Our work can contribute
towards this goal by combining eye gaze autocalibration updates
with other natural interaction modalities (such as hand gestures,
head movements, speech etc.), offering more accurate eye-tracking,

and thereby improving the user’s interaction with the AR/VR en-
vironment. One user study participant shared their excitement
for integrating gaze typing technology with other modalities (e.g.
speech or joystick input to smart TVs). They also recognized that
the additional cognitive load may necessitate autocalibration and
additional support for real-world deployment: “As someone who is
open to alternative means of typing due to physical restrictions, I like
the potential of the technology but also acknowledge the potential
strain for persons mentally and physically. It would be cool for per-
sons typing on TVs though”. Developing and studying how to best
autocalibrate and support such multimodal interfaces is an exciting
topic for future work.

We also note that while users with motor impairments (such as
Amyotrophic Lateral Sclerosis or ALS) are early adopters of the gaze
typing technology [9], we propose our autocalibration algorithm in
an attempt to make the broader adoption of gaze typing interfaces
more realistic. A user study to understand the specific impact of
our autocalibration approach for accessibility through evaluation
with ALS participants is also an important topic of future work.

6 Conclusion
Eye tracking technology has enabled computer interactions such as
gaze typing for many users, with the potential to unlock additional
future applications and interactions. However, the accuracy and
efficiency of gaze tracking (including the application of gaze typing)
can be significantly impacted by the calibration of the eye tracking
system. Conventional calibration methods are time-consuming and
require users to periodically perform manual calibrations, which
can be inconvenient and disruptive to the user experience. Users
also often compensate for miscalibration by intentionally offsetting
their gaze, increasing their cognitive load, and confounding the
automatic detection and correction of miscalibration. As a result,
calibration problems remain a significant barrier to use [9].

To help address this problem for gaze typing, we provide the
insight that users compensate their gaze during typing and not dur-
ing reading. Thus, offsets detected during reading or verification
attempts of typed characters can enable the correction of miscalibra-
tion. We demonstrate this approach through our EyeO prototype,
which provides autocalibration for gaze typing to create a more
seamless and accurate user experience. Our approach dynamically
compensates for miscalibration when users read the text they have
typed. Results from our user study suggest that by leveraging the
natural gaze behavior of users during fixations on the typed text,
our autocalibration system provides a more efficient, less mentally
demanding, and overall preferable experience compared to tradi-
tional manual calibration. This opens up a novel adaptive approach
for everyday users to interact with visual interfaces.

Acknowledgments
The authors would like to thank Pete Ansell, Jay Beavers, Jon
Campbell, Susan Dumais, Harish Kulkarni, John Tang, and Shane
Williams for helpful discussions and feedback.

References
[1] Yasmeen Abdrabou, MariamMostafa, Mohamed Khamis, and Amr Elmougy. 2019.

Calibration-free text entry using smooth pursuit eye movements. In Proceedings
of the 11th ACM Symposium on Eye Tracking Research & Applications. 1–5.

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

[2] Omair Shahzad Bhatti, Michael Barz, and Daniel Sonntag. 2021. EyeLogin-
calibration-free authentication method for public displays using eye gaze. In
ACM Symposium on Eye Tracking Research and Applications. 1–7.

[3] Xiuli Chen, Aditya Acharya, Antti Oulasvirta, and Andrew Howes. 2021. An
adaptive model of gaze-based selection. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–11.

[4] Microsoft Corporation. 2018. Windows Eye Control. https://www.microsoft.
com/en-us/garage/wall-of-fame/eye-control-windows-10/.

[5] Microsoft Corporation. 2021. MS Gaze Interaction Library. https://learn.microsoft.
com/en-us/windows/communitytoolkit/gaze/gazeinteractionlibrary.

[6] Microsoft Corporation. 2021. Windows Community Toolkit. https:
//github.com/CommunityToolkit/WindowsCommunityToolkit/tree/rel/7.
1.0/Microsoft.Toolkit.Uwp.Input.GazeInteraction.

[7] Wenzhe Cui, Rui Liu, Zhi Li, YifanWang, AndrewWang, Xia Zhao, Sina Rashidian,
Furqan Baig, IV Ramakrishnan, FushengWang, et al. 2023. GlanceWriter: Writing
Text by Glancing Over Letters with Gaze. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–13.

[8] Heiko Drewes. 2010. Eye gaze tracking for human computer interaction. Ph. D.
Dissertation. lmu.

[9] Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni,
Shaun Kane, and Meredith Ringel Morris. 2017. Toward everyday gaze input:
Accuracy and precision of eye tracking and implications for design. In Proceedings
of the 2017 Chi conference on human factors in computing systems. 1118–1130.

[10] Jensen Gao, Siddharth Reddy, Glen Berseth, Nicholas Hardy, Nikhilesh Natraj,
Karunesh Ganguly, Anca D Dragan, and Sergey Levine. 2022. X2T: Training an
x-to-text typing interface with online learning from user feedback. arXiv preprint
arXiv:2203.02072 (2022).

[11] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[12] Mamoru Hiroe, Michiya Yamamoto, and Takashi Nagamatsu. 2018. Implicit user
calibration for gaze-tracking systems using an averaged saliency map around
the optical axis of the eye. In Proceedings of the 2018 ACM Symposium on Eye
Tracking Research & Applications. 1–5.

[13] Mamoru Hiroe, Michiya Yamamoto, and Takashi Nagamatsu. 2023. Implicit
User Calibration for Gaze-tracking Systems Using Saliency Maps Filtered by Eye
Movements. In Proceedings of the 2023 Symposium on Eye Tracking Research and
Applications. 1–5.

[14] Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst,
Halszka Jarodzka, and Joost Van de Weijer. 2011. Eye tracking: A comprehensive
guide to methods and measures. OUP Oxford.

[15] Kiyoshi Hoshino, Yuki Noguchi, and Yuya Nakai. 2020. Gaze estimation with
easy calibration method. In Proceedings of the 2020 5th International Conference
on Intelligent Information Technology. 102–106.

[16] Michael Xuelin Huang, Tiffany CK Kwok, Grace Ngai, Stephen CF Chan, and
Hong Va Leong. 2016. Building a personalized, auto-calibrating eye tracker from
user interactions. In Proceedings of the 2016 CHI conference on human factors in
computing systems. 5169–5179.

[17] Thomas E Hutchinson, K Preston White, Worthy N Martin, Kelly C Reichert,
and Lisa A Frey. 1989. Human-computer interaction using eye-gaze input. IEEE
Transactions on systems, man, and cybernetics 19, 6 (1989), 1527–1534.

[18] Robert JK Jacob and Keith S Karn. 2003. Eye tracking in human-computer
interaction and usability research: Ready to deliver the promises. In The mind’s
eye. Elsevier, 573–605.

[19] Pawel Kasprowski and Katarzyna Harezlak. 2016. Implicit calibration using
predicted gaze targets. In Proceedings of the ninth Biennial ACM symposium on
eye tracking research & applications. 245–248.

[20] Pawel Kasprowski and Katarzyna Harezlak. 2018. Comparison of mapping
algorithms for implicit calibration using probable fixation targets. In Proceedings
of the 2018 ACM Symposium on Eye Tracking Research & Applications. 1–8.

[21] Mohamed Khamis, Ozan Saltuk, Alina Hang, Katharina Stolz, Andreas Bulling,
and Florian Alt. 2016. TextPursuits: using text for pursuits-based interaction and
calibration on public displays. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. 274–285.

[22] Otto Hans-Martin Lutz, Antje Christine Venjakob, and Stefan Ruff. 2015.
SMOOVS: Towards calibration-free text entry by gaze using smooth pursuit
movements. Journal of Eye Movement Research 8, 1 (2015).

[23] I Scott MacKenzie and R William Soukoreff. 2002. Text entry for mobile comput-
ing: Models and methods, theory and practice. Human–Computer Interaction 17,
2-3 (2002), 147–198.

[24] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov. 2009. Fast gaze typing with
an adjustable dwell time. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 357–360.

[25] Päivi Majaranta and Kari-Jouko Räihä. 2002. Twenty years of eye typing: systems
and design issues. In Proceedings of the 2002 symposium on Eye tracking research
& applications. 15–22.

[26] Päivi Majaranta and Kari-Jouko Räihä. 2007. Text entry by gaze: Utilizing eye-
tracking. Text entry systems: Mobility, accessibility, universality 2007 (2007),
175–187.

[27] George W McConkie, Paul W Kerr, Michael D Reddix, and David Zola. 1988.
Eye movement control during reading: I. The location of initial eye fixations on
words. Vision research 28, 10 (1988), 1107–1118.

[28] Carlos H Morimoto and Marcio RM Mimica. 2005. Eye gaze tracking techniques
for interactive applications. Computer vision and image understanding 98, 1 (2005),
4–24.

[29] Martez E Mott, Mathieu Nancel, Gierad Laput Kumar, Chris Harrison, and Antti
Oulasvirta. 2017. Cascading gaze dwells: on the efficiency of bottom-up activation
in gaze-based cascading menus. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. ACM, 5308–5319.

[30] Ken Pfeuffer, Melodie Vidal, Jayson Turner, Andreas Bulling, and Hans Gellersen.
2013. Pursuit calibration: Making gaze calibration less tedious and more flexible.
In Proceedings of the 26th annual ACM symposium on User interface software and
technology. 261–270.

[31] Keith Rayner. 1979. Eye guidance in reading: Fixation locations within words.
Perception 8, 1 (1979), 21–30.

[32] Kerstin Ruhland, Christopher E Peters, Sean Andrist, Jeremy B Badler, Norman I
Badler, Michael Gleicher, Bilge Mutlu, and Rachel McDonnell. 2015. A review of
eye gaze in virtual agents, social robotics and hci: Behaviour generation, user
interaction and perception. In Computer graphics forum, Vol. 34. Wiley Online
Library, 299–326.

[33] Dario D Salvucci and Joseph H Goldberg. 2000. Identifying fixations and saccades
in eye-tracking protocols. In Proceedings of the 2000 symposium on Eye tracking
research & applications. 71–78.

[34] Akanksha Saran, Srinjoy Majumdar, Elaine Schaertl Short, Andrea Thomaz, and
Scott Niekum. 2018. Human gaze following for human-robot interaction. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
8615–8621.

[35] Akanksha Saran, Elaine Schaertl Short, Andrea Thomaz, and Scott Niekum. 2020.
Understanding teacher gaze patterns for robot learning. In Conference on Robot
Learning. PMLR, 1247–1258.

[36] Akanksha Saran, Ruohan Zhang, Elaine Schaertl Short, and Scott Niekum. 2020.
Efficiently guiding imitation learning agents with human gaze. arXiv preprint
arXiv:2002.12500 (2020).

[37] Shreshth Saxena, Elke Lange, and Lauren Fink. 2022. Towards efficient calibration
for webcam eye-tracking in online experiments. In 2022 Symposium on Eye
Tracking Research and Applications. 1–7.

[38] Oleg Špakov, Howell Istance, Tiia Viitanen, Harri Siirtola, and Kari-Jouko Räihä.
2018. Enabling unsupervised eye tracker calibration by school children through
games. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications. 1–9.

[39] Oleg Špakov, Harri Siirtola, Howell Istance, and Räihä Kari-Jouko. 2017. Visual-
izing the reading activity of people learning to read. Journal of Eye Movement
Research 10, 5 (2017).

[40] Kang Wang, Shen Wang, and Qiang Ji. 2016. Deep eye fixation map learning
for calibration-free eye gaze tracking. In Proceedings of the ninth biennial ACM
symposium on eye tracking research & applications. 47–55.

[41] Ruohan Zhang, Akanksha Saran, Bo Liu, Yifeng Zhu, Sihang Guo, Scott Niekum,
Dana Ballard, and Mary Hayhoe. 2020. Human gaze assisted artificial intelligence:
A review. In IJCAI: Proceedings of the Conference, Vol. 2020. 4951.

[42] Xiaoyi Zhang, Harish Kulkarni, and Meredith Ringel Morris. 2017. Smartphone-
based gaze gesture communication for people with motor disabilities. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
2878–2889.

[43] Yunfeng Zhang and Anthony J Hornof. 2014. Easy post-hoc spatial recalibration
of eye tracking data. In Proceedings of the symposium on eye tracking research and
applications. 95–98.

https://www.microsoft.com/en-us/garage/wall-of-fame/eye-control-windows-10/
https://www.microsoft.com/en-us/garage/wall-of-fame/eye-control-windows-10/
https://learn.microsoft.com/en-us/windows/communitytoolkit/gaze/gazeinteractionlibrary
https://learn.microsoft.com/en-us/windows/communitytoolkit/gaze/gazeinteractionlibrary
https://github.com/CommunityToolkit/WindowsCommunityToolkit/tree/rel/7.1.0/Microsoft.Toolkit.Uwp.Input.GazeInteraction
https://github.com/CommunityToolkit/WindowsCommunityToolkit/tree/rel/7.1.0/Microsoft.Toolkit.Uwp.Input.GazeInteraction
https://github.com/CommunityToolkit/WindowsCommunityToolkit/tree/rel/7.1.0/Microsoft.Toolkit.Uwp.Input.GazeInteraction

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

A Appendix
A.1 Additional Details on the EyeO Prototype
A.1.1 System Setup. Currently available visual keyboards, such
as in Windows Eye Control [4] (Fig. 1(a)) are explicitly calibrated
using a 9-point calibration method (Fig. 6). However, EyeO provides
more control to adaptively process and update the miscalibrated
gaze coordinates in real-time for such keyboards.

Figure 2 illustrates the mechanism for typing a character on
the visual keyboard we use in this work. A user’s gaze location
as detected by the eye tracker is displayed as a red dot on the
screen. If they fixate on a key for 50 ms, the system initiates a
dwell timer of 400ms. The start of the timer is depicted by a green
rectangle on the selected key (Fig. 2(a)). During fixation on the key,
the green rectangle slowly decreases in area, eventually collapsing
at the center of the key (Fig. 2(b)). When the timer finishes, the
user receives visual feedback that the character on the key has been
typed: the key turns red (Fig. 2(c)) and the letter is added to the text
box at the top of the screen (Fig. 2(d)).

The tracked gaze is directed toward the full screen visual key-
board (Fig. 2), displayed on a 14-inch Lenovo laptop screen. The
visual keyboard can adapt to any screen size. While our autocali-
bration algorithm is tested on this specific keyboard layout, it is
not restrictive and can be extended to work with any other key-
board layout by tuning the autocalibration hyperparameters used
in Algorithm 1. The keyboard implementation we used is avail-
able via the open-source Windows community toolkit [6] and our
autocalibration algorithm is added to the keyboard functionality
via a UWP application available as part of Microsoft’s open-source
Gaze Interaction Library [5]. The EyeO prototype was programmed
using the Tobii Pro SDK (designed to offer access to gaze data from
Tobii eye trackers) in C#. It facilitates the capture and processing
of x, y coordinates from the eye tracker, providing necessary data
for EyeO to leverage and update the gaze coordinates in real time.
The software for our autocalibration algorithm was developed in
Python, which received the 2D gaze coordinates in real-time from
the UWP application via Google’s remote procedure call (RPC)
protocol. This allowed Python scripts to access gaze data, analyze
it, and apply the necessary miscalibration corrections to display
back on the visual keyboard application in real-time (∼ 60 Hz). The
system was tested on a laptop with an Intel Core i7–10610U and 16
GB memory.

A.1.2 Gaze Filtering. Eye gaze movements can be characterized
as: (a) fixations, (b) saccades, (c) smooth pursuits, and (d) vestibulo-
ocular movements [14, 35]. Visual fixations maintain the focus
of gaze on a single location. Fixation duration varies based on
the task, but one fixation is typically 100-500 ms, although it can
be as short as 30 ms. Saccades are rapid, ballistic, voluntary eye
movements (usually between 20-200 ms) that abruptly change the
point of fixation. Smooth pursuit movements are slower tracking
movements of the eyes that keep a moving stimulus on the fovea.
Such movements are voluntary in that the observer can choose to
track a moving stimulus, but only highly trained people can make
smooth pursuit movements without a target to follow. The gaze
typing interface used in this work does not consist of any moving
targets. Vestibulo-ocular movements stabilize the eyes relative to

the external world to compensate for head movements. These reflex
responses prevent visual images from slipping on the surface of
the retina as head position changes. With respect to gaze typing
on visual keyboards, we don’t expect users to move their heads
significantly.

In our setup, we expect users to primarily use fixations and
saccades during gaze typing [9] as smooth pursuits and vestibulo-
ocular movements are not present in our trials. To distinguish
fixations from saccades, we consider spatial and temporal criteria
from the taxonomy of fixation identification algorithms described
by Salvucci and Goldberg [33]. In our work, we use the IVDT al-
gorithm from the taxonomy which uses velocity-based (threshold
50◦/𝑠) and area-based (threshold 2◦ of visual angle) criteria as
spatial characteristics and duration-based criteria as a temporal
characteristic to filter out fixations from saccades. We first filter out
eye movements with very high speeds (a large distance traversed
over a very short period of time is likely a saccade). If gaze contin-
ues to not be classified as a saccade for more than 100 ms while
falling in a region of interest, then we consider it a fixation.

A.1.3 Autocalibration Algorithm. The algorithm input comprises
of a stream of coordinates (𝑥𝑡 , 𝑦𝑡) from the device driver, as well
as several variables describing the state of the keyboard interface.
It produces estimated gaze coordinates (𝑥𝑡 , 𝑦𝑡) based on adaptively
estimated calibration errors (𝜖𝑥𝑡 , 𝜖𝑦𝑡), which are refined whenever
the user is inferred to be reading the last typed character displayed
in the text box. The difference between the center location of the
last typed character in the text box and the predicted gaze location
during a verification attempt is the estimated amount of miscali-
bration at any given moment. This estimate is accumulated over
time to give a smoothed autocalibration update for the predicted
gaze location.

The user’s gaze is assumed to be directed towards the text box
when it falls above the keyboard layout and is assumed to be fixated
on verifying the last typed character when it falls within a certain
threshold distance 𝜏 (calibration zone) from the center of the last
typed character. We first filter out saccades and then detect fixations
(Sec. A.1.2) within the calibration zone (lines 5-7 in Algorithm 1).
Visual fixations maintain the focus of gaze on a single location and
are potential candidates for verification reading attempts of the last
typed character.

We assume that the user fixates on the center of the last typed
character when they look up to verify what they typed with their
gaze. We detect the offset in calibration based on how far their gaze
is predicted by the eye tracker and where the center of the last typed
character is on the screen (lines 8-10 in Algorithm 1). Our system
computes a moving average of the calibration offsets (line 9), which
enables the calibration to be updated continuously and smoothly
in real-time. The system continuously updates the calibration error
based on the user’s gaze behavior during verification of the typed
text. The computed correction for the detected miscalibration is
continuously applied even when the user’s gaze moves away from
the text box (i.e. while typing on the visual keyboard) as depicted in
lines 12-15. Our simplified algorithm and prototype implementation
allow for this adaptive interface to correct for miscalibration in real-
time. The corrected gaze coordinates are displayed to the user with
the updated location of the red gaze cursor (Fig. 2(a)).

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 6: Traditional 9-point calibration system used to calibrate eye tracking hardware.

We instantiate the proposed algorithm with the calibration zone
size parameter (the distance around the location of the last typed
character where we detect gaze fixations for reading) 𝜏 = 150
pixels, window size (to compute the running average)𝑤 = 64, and
calibration error bound (the maximum amount of miscalibration
tolerated/corrected by the system) 𝑏 = 200 pixels. These parameter
values were determined during early prototype testing based on:
(1) maximum limit of miscalibration amounts under which gaze
typing could be successfully performed with user compensation
and (2) desirable rate of calibration updates that minimized latency
and interruptions to real-time interaction frequency.

A.2 Additional Details on the User Study
A.2.1 System Setup. Both systems (EyeO and control) shared the
same visual keyboard layout and gaze typing application. The only
difference was that EyeO contained an additional layer of Python
software to detect and correct for miscalibration (described in Sec-
tion 3.2). We used a remote video-based tracker (typically attached
to the bottom of a computer screen). It captures the gaze location
of the user in screen coordinates at regular intervals (recording
frequency ∼ 60Hz). It is a head-pose-free tracker, that can toler-
ate minor head movements within a certain range of locations
and orientations. All manual calibrations were performed via the
standard Tobii SDK 9-point calibration procedure (Fig. 6). We note
that this calibration procedure is run via a proprietary black-box
software module. End-users and application designers do not have
any flexibility or control over this module. Our proposed approach
adds a layer of control on top of this black-box software module to
correct users’ gaze coordinates under miscalibration. Importantly,
our proposed technique is flexible to augment any other existing
proprietary or open-source calibration software stack.

A.2.2 Procedure. Participants were initially introduced to gaze typ-
ing and given a brief tutorial on how to use the on-screen keyboard.
The experiment consisted of an initial calibration procedure, a prac-
tice round, and trials of both EyeO and the control (within-subjects
study). The practice round was attempted with the well-calibrated
control system during which they typed a couple of simple phrases
(‘happy new year’, ‘hello world’) in the gaze typing application. Dur-
ing the system trials, the participants were not told which system
they were testing (EyeO or control). The systems were anonymized
as system A and system B respectively. The order of the EyeO and
control phases was counterbalanced across participants.

Users were free to abort a typing session if they found the setup
too cumbersome to continue with the task. This was especially true
for some users who experienced fatigue or found it very challeng-
ing to type under induced miscalibration. Any such partial typing
sessions that were aborted are reflected in our results in Sec. 4.4.1.

A.2.3 Miscalibration parameters. Miscalibration of different amounts
was purposefully introduced for each system (EyeO and Control)
to evaluate the typing experience of users (Sec. 4.3). We do this
for two reasons: (1) to accurately measure and report quantitative
performance improvements with autocalibration. (2) stress test the
gaze typing systems in addition to the miscalibrations that naturally
appear over time with user fatigue, lighting changes, head or body
movement etc. Participants typed a set of unique phrases (one each
for the different miscalibration amounts) under the two gaze typing
systems. No phrase was repeated across participants or across the
two systems. The users were made aware that the systems would
exhibit miscalibration during the study, but were not made aware
of any differences between the two systems.

The gaze tracker was calibrated at the beginning of each of the
two system trials (EyeO and Control). Given that users viewed the

CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Saran et al.

(a) Gaze used for typing: the user compensates for miscalibration to the
right (depicted by the dotted line between the red gaze prediction and the
user’s intended fixation location in yellow), intentionally focusing to the
left (yellow) of the key they want to select (the first key on the second row
of the keyboard).

(b) Gaze used for reading: the user does not compensate for miscalibration
(predicted gaze location in red away from the letter being read), looking
directly at the text they read (intended fixation location in yellow actually
being read by the user). Their gaze does not control the system, so they are
free to look where is natural. The difference between the red and yellow
locations provides a signal to correct for miscalibration.

Figure 7: Demonstration of the difference in gaze offset between typing and reading. We leverage this difference to detect and
correct miscalibrations, providing the user with a more seamless experience.

200 150 100 50 0 50 100 150 200
Distance (X) in pixels

0

10

20

30

40

50

Fr
eq

ue
nc

y

Natural drift distribution in the x-direction

200 150 100 50 0 50 100 150 200
Distance (Y) in pixels

0

5

10

15

20

25
Fr

eq
ue

nc
y

Natural drift distribution in the y-direction

Figure 8: Distribution of natural drift in the accuracy of the eye tracker in the x and y directions.

0 20 40 60 80
Time (secs)

0

50

100

%
 C

or
re

ct
io

n

Miscalibration offset [75, 0]

0 20 40 60
Time (secs)

0

50

100

Miscalibration offset [-75, 0]

0 25 50 75 100
Time (secs)

0

50

100

Miscalibration offset [0, 75]

0 25 50 75 100
Time (secs)

0

50

100

Miscalibration offset [0, -75]

Figure 9: Autocalibration updates over time by EyeO for a representative participant of the user study. The denominator for
the y-axis represents the miscalibration amount introduced in the experiment and the numerator represents the amount of
miscalibration corrected via autocalibration.

screen at a distance of approximately 75 cm, an induced miscalibra-
tion of 75 pixels corresponds to ∼ 0.9 degrees of visual angle. Since
we do not restrict users’s seating in any way, we expect the miscali-
bration to lie between ∼ 0.7-1.2 degrees of visual angle. Errors were
introduced independently in the x and y directions to better isolate
the impact of compensation in the two directions, following the
study design of Feit et al. [9]. The induced miscalibrations affected
the entire screen uniformly. While prior work [9] have shown that
eye tracking accuracy varies significantly across different regions

of the screen (with worse performance in the bottom right of the
screen versus the top of the screen), several factors that introduce
errors after good calibration (such as movement of the user or track-
ing setup) will result in miscalibration in the same direction on all
parts of the screen [9]. In such cases even correcting for miscalibra-
tion via fixations at the top of the screen will be beneficial for typing
faster in the lower regions of the screen compared to not correcting
for any miscalibration at all. Based on different application needs

EyeO: Autocalibrating Gaze Output with Gaze Input for Gaze Typing CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

and interface designs, gaze input signals from diverse regions of
the screen can help with more accurate autocalibration.

The miscalibration parameters were determined during early
prototype testing. The values were chosen such that users could
face a significant challenge during the typing task while still being
able to complete it by compensating. Additionally, we also measure
the degradation in the accuracy of the eye tracker caused by natural
usage. We ask 10 separate users to calibrate their eyes with the
tracker, move away for a short walk, and then return to type a
test phrase from a standard corpus [23]. Fig. 8 shows that the drift
distribution in both the x and y directions primarily lies in the range
of −50 to 50 pixels. Thus our induced miscalibration parameter of
75 pixels is towards the tail end of the distribution and serves as

a way to stress test the system in more extreme conditions than
those observed on average.

A.2.4 Additional Results. To further illustrate the effectiveness of
EyeO, we show how autocalibration corrections update over time
during individual typing sessions for a single representative par-
ticipant (Fig. 9). For miscalibration induced in different directions,
we find that EyeO adapts to the error nearly perfectly. The sharp
jump closing the error gap shown in Fig. 9 indicates how a single
last-character reading attempt early in the session (usually within
∼ 25 seconds for the representative user) can be sufficient to ease
the burden of miscalibration. Note the control system never updates
during the session — the user thus must continuously compensate
to successfully type under miscalibration with such a system.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Calibration Methods for Eye Trackers
	2.2 Reading Behavior during Gaze Typing

	3 EyeO Prototype
	3.1 System Design
	3.2 Autocalibration Algorithm

	4 User Study
	4.1 Participants
	4.2 System Setup
	4.3 Procedure
	4.4 Results
	4.5 Verification of last typed character reading assumption

	5 Discussion
	5.1 Limitations
	5.2 Implications for Gaze Typing
	5.3 Future Work

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Additional Details on the EyeO Prototype
	A.2 Additional Details on the User Study

